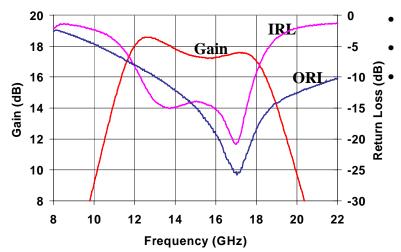


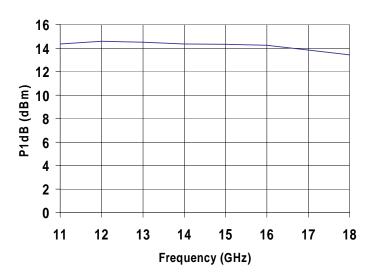
12-18 GHz Ku-Band 2-Stage Driver Amplifier

TGA2506-EPU



Key Features

- 12-18 GHz Bandwidth
- 17 dB Nominal Gain
- > 14 dBm P1dB
- Bias: 5,6,7 V, 40 ± 10% mA Self Bias
- 0.5 um 3MI mmW pHEMT Technology
- Chip Dimensions: 1.19 x 0.83 x 0.1 mm (0.047 x 0.031 x 0.004) in


Preliminary Measured Data

Bias Conditions: Vd = 6 V, Id = 40 mA

Primary Applications

- Point to Point Radio
 - Military Ku-Band
 - Space Ku-Band
 - **VSAT**

TGA2506-EPU

TABLE I MAXIMUM RATINGS 1/

SYMBOL	PARAMETER	VALUE	NOTES
V ⁺	Positive Supply Voltage	8 V	<u>2/</u>
l ⁺	Positive Supply Current (Quiescent)	57 mA	<u>2/</u>
P _{IN}	Input Continuous Wave Power	20 dBm	
P_{D}	Power Dissipation	0.45	<u>2</u> / <u>3</u> /
T _{CH}	Operating Channel Temperature	150 ⁰ C	<u>4</u> / <u>5</u> /
T _M	Mounting Temperature (30 Seconds)	320 °C	
T _{STG}	Storage Temperature	-65 to 150 °C	

- 1/ These ratings represent the maximum operable values for this device
- 2/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 3/ When operated at this bias condition with a base plate temperature of 70 °C, the median life is reduced to 1E+7 hrs.
- 4/ Combinations of supply voltage, supply current, input power, and output power shall not exceed P_D.
- 5/ These ratings apply to each individual FET.

TABLE II DC PROBE TESTS

 $(T_A = 25 \, ^{\circ}C \, Nominal)$

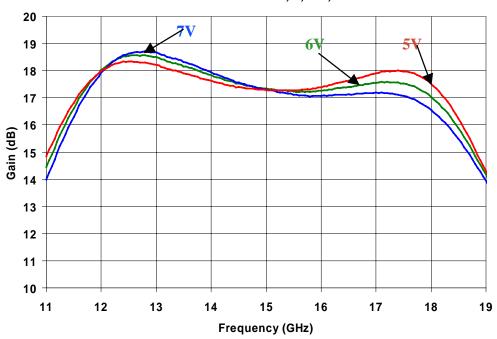
SYMBOL	PARAMETER	MINIMUM	MAXIMUM	VALUE
V_{BVGS2}	Breakdown Voltage gate-source	-30	-11	V
V_{BVGD2}	Breakdown Voltage gate-drain	-30	-11	V
V _{P2}	Pinch-off Voltage	-1.5	-0.3	V

TGA2506-EPU

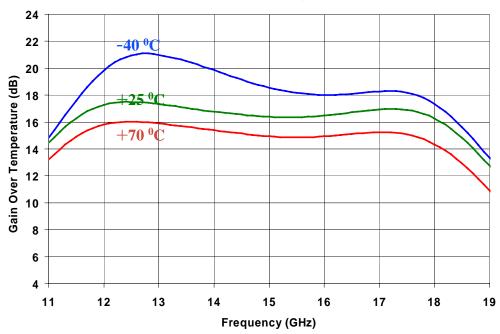
TABLE III ELECTRICAL CHARACTERISTICS

 $(Ta = 25 \, {}^{\circ}C, Nominal)$

PARAMETER	TYPICAL	UNITS
Drain Operating	6	V
Quiescent Current	40 ± 10% Self Bias	mA
Small Signal Gain	17	dB
Input Return Loss	15	dB
Output Return Loss	15	dB
Output Power @ 1 dB Compression Gain	14	dBm
Noise Figure (@ Mid-band)	5.5	dB

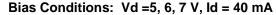

TABLE IV THERMAL INFORMATION

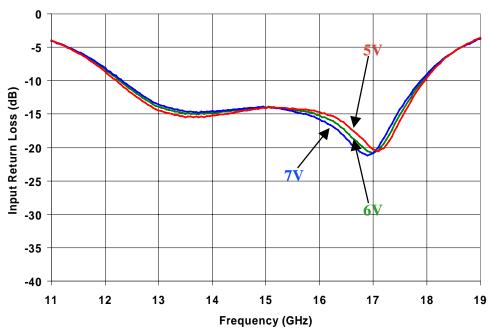
PARAMETER	TEST CONDITIONS	T _{CH} (°C)	R _{θJC} (°C/W)	T _M (HRS)
R _{eJC} Thermal Resistance (channel to Case)	Vd = 6 V Id = 40 mA Pdiss = 0.24 W	99	121	1.4E+8

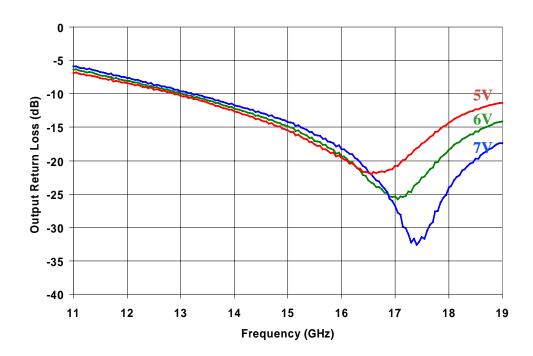

Note: Assumes eutectic attach using 1.5 mil 80/20 AuSn mounted to a 20 mil CuMo Carrier at 70°C baseplate temperature. Worst case condition with no RF applied, 100% of DC power is dissipated.

Preliminary Measured Data

Bias Conditions: Vd = 5, 6, 7 V, Id = 40 mA

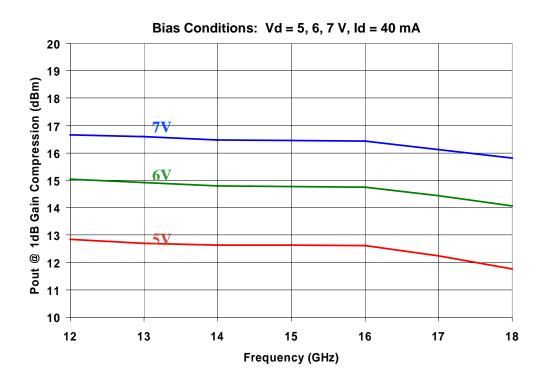

Bias Conditions: Vd = 6 V, Id = 40 mA

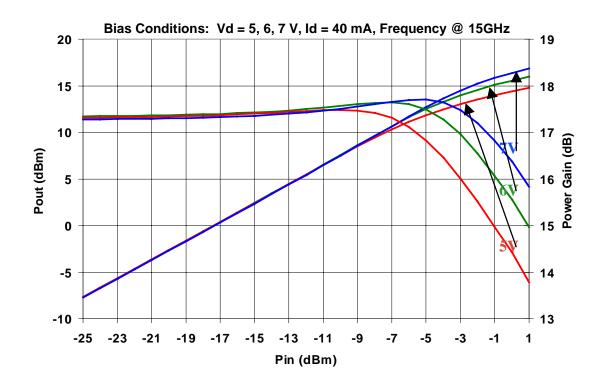




TGA2506-EPU

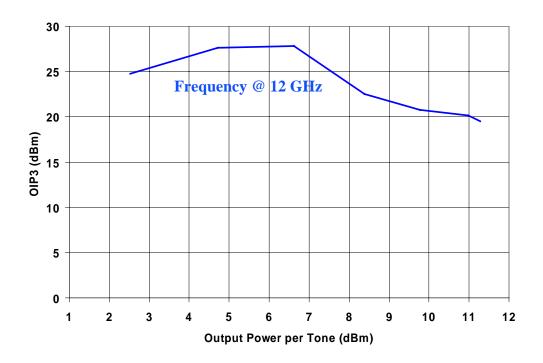
Preliminary Measured Data

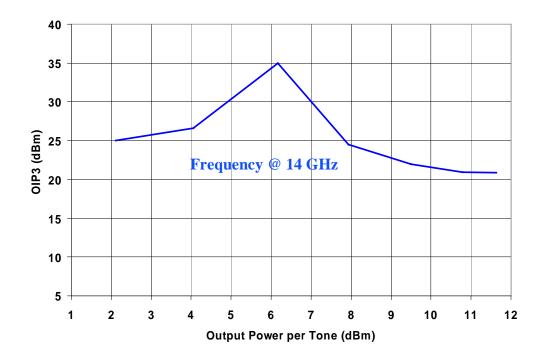




TGA2506-EPU

Preliminary Measured Data

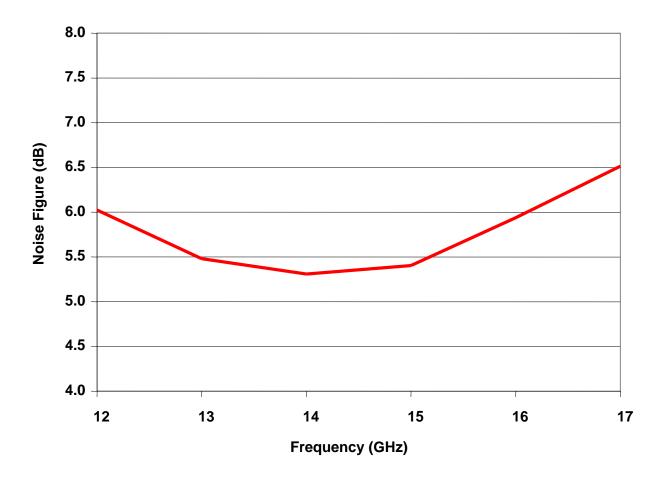




TGA2506-EPU

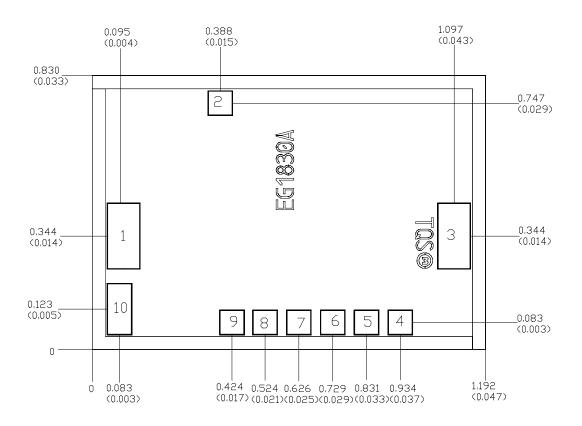
Preliminary Measured Data

Bias Conditions: Vd = 6 V, Id = 40 mA



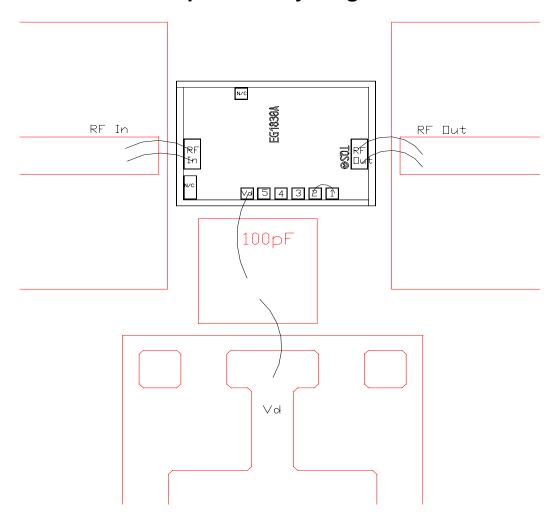
TGA2506-EPU

Preliminary Measured Data


Bias Conditions: Vd = 6 V, Id = 40 mA

TGA2506-EPU

Mechanical Drawing


```
Units: millimeters (inches)
Thickness: 0.100 (0.004)
Chip edge to bond pad dimensions are shown to center of bond pad
Chip size tolerance: +/- 0.051 (0.002)
GND is back side of MMIC
                  (RF In)
Bond pad #1
                                        0.100 \times 0.200
                                                          (0.004 \times 0.008)
                  (N/C)
Bond pad #2
                                        0.075 \times 0.075
                                                          (0.003 \times 0.003)
Bond pad #3
                  (RF □ut)
                                        0.100 \times 0.200
                                                          (0.004 \times 0.008)
                 (DC Bias ladder)
(DC Bias ladder)
                                        0.075 \times 0.075
                                                          (0.003 \times 0.003)
Bond pad #4
                                        0.075 \times 0.075
Bond pad #5
                                                          (0.003 \times 0.003)
                                        0.075 \times 0.075
Bond pad #6
                  (DC Blas ladder)
                                                          (0.003 \times 0.003)
Bond pad #7
                  (DC Bias ladder)
                                        0.075 \times 0.075
                                                          (0.003 \times 0.003)
Bond pad #8
                  (DC Bias ladder)
                                        0.075 \times 0.075
                                                          (0.003 \times 0.003)
                  (Vd)
                                        0.075 \times 0.075
Bond pad #9
                                                          (0.003 \times 0.003)
                                        0.075 × 0.155
                 (N/C)
Bond pad #10
                                                          (0.003 \times 0.006)
```

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

TGA2506-EPU

Chip Assembly Diagram

This configuration is for a self-bias logic pad current search with connection for bin # 1 . See Table IV for alternate bin # to get the current typical of $40 \pm 10\%$ mA.

TABLE IV PAD CONNECTIONS

BIN NO.	CONNECTION
1	Pad 4 to Pad 5
2	Pad 4 to Pad 6
3	Pad 4 to Pad 7
4	Pad 4 to Pad 8

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.

Advance Product Information June 28, 2004 TGA2506-EPU

Assembly Process Notes

Reflow process assembly notes:

- Use AuSn (80/20) solder with limited exposure to temperatures at or above 300 C (30 seconds max).
- An alloy station or conveyor furnace with reducing atmosphere should be used.
- No fluxes should be utilized.
- Coefficient of thermal expansion matching is critical for long-term reliability.
- Devices must be stored in a dry nitrogen atmosphere.

Component placement and adhesive attachment assembly notes:

- Vacuum pencils and/or vacuum collets are the preferred method of pick up.
- Air bridges must be avoided during placement.
- The force impact is critical during auto placement.
- Organic attachment can be used in low-power applications.
- Curing should be done in a convection oven; proper exhaust is a safety concern.
- Microwave or radiant curing should not be used because of differential heating.
- Coefficient of thermal expansion matching is critical.

Interconnect process assembly notes:

- Thermosonic ball bonding is the preferred interconnect technique.
- Force, time, and ultrasonics are critical parameters.
- Aluminum wire should not be used.
- Maximum stage temperature is 200

 C.

GaAs MMIC devices are susceptible to damage from Electrostatic Discharge. Proper precautions should be observed during handling, assembly and test.